Books in a library - scientific research into Long Covid

Research Articles

The following articles are referenced on different pages of this site.

What Is Long Covid?

Subramanian, A., Nirantharakumar, K., Hughes, S. et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat Med (2022). https://doi.org/10.1038/s41591-022-01909-w

Canas, Liane S, et al. Profiling post-COVID syndrome across different variants of SARS-CoV-2 (Preprint), 31 July 2022, medRxiv 2022.07.28.22278159; doi: https://doi.org/10.1101/2022.07.28.22278159

Reese J, et al; and the RECOVER Consortium. Generalizable Long COVID Subtypes: Findings from the NIH N3C and RECOVER Programs. medRxiv [Preprint]. 2022 May 25:2022.05.24.22275398. doi: 10.1101/2022.05.24.22275398. PMID: 35665012; PMCID: PMC9164456.

Advertisement

The Geek’s Guide To Long Covid is available as an ebook!
You’ll find a comprehensive guide to using wearables, apps and technology to cope with Long Covid. It offers detailed instructions on pacing, heart rate monitoring, HRV, POTS, deep breathing, tVNS, air purifiers, CO2 monitors and lots more.
Available from Amazon

Cover image of The Geek's Guide To Long Covid ebook: Navigating Long Covid with wearables, apps, devices and technology. By Louise Lushton

Lopez-Leon, S., Wegman-Ostrosky, T., Perelman, C. et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep 11, 16144 (2021). https://doi.org/10.1038/s41598-021-95565-8

Ho FK, Man KKC, Toshner M, Church C, Celis-Morales C, Wong ICK, Berry C, Sattar N, Pell JP. Thromboembolic Risk in Hospitalized and Nonhospitalized COVID-19 Patients: A Self-Controlled Case Series Analysis of a Nationwide Cohort. Mayo Clin Proc. 2021 Oct;96(10):2587-2597. doi: 10.1016/j.mayocp.2021.07.002. Epub 2021 Jul 16. PMID: 34607634; PMCID: PMC8282478.

PHOSP-COVID Collaborative Group. Clinical characteristics with inflammation profiling of long COVID and association with 1-year recovery following hospitalisation in the UK: a prospective observational study. Lancet Respir Med. 2022 Apr 22:S2213-2600(22)00127-8. doi: 10.1016/S2213-2600(22)00127-8. Epub ahead of print. PMID: 35472304; PMCID: PMC9034855.

Yang, A.C., Kern, F., Losada, P.M. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021). https://doi.org/10.1038/s41586-021-03710-0

Søraas A, Bø R, Kalleberg KT, Støer NC, Ellingjord-Dale M, Landrø NI. Self-reported Memory Problems 8 Months After COVID-19 Infection. JAMA Netw Open. 2021;4(7):e2118717. doi:10.1001/jamanetworkopen.2021.18717

de Erausquin Gabriel A. et al. Olfactory dysfunction and chronic cognitive impairment following SARS-CoV-2 infection in a sample of older adults from the Andes mountains of Argentina. Presentation at 2021 Alzheimer’s Association International Conference July 2021

Ayoubkhani D, Khunti K, Nafilyan V, Maddox T, Humberstone B, Diamond I et al. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study BMJ 2021; 372 :n693 doi:10.1136/bmj.n693

Ramakrishnan RK, Kashour T, Hamid Q, Halwani R, Tleyjeh IM. Unraveling the Mystery Surrounding Post-Acute Sequelae of COVID-19. Front Immunol. 2021 Jun 30;12:686029. doi: 10.3389/fimmu.2021.686029. PMID: 34276671; PMCID: PMC8278217.

Chertow, D et al. SARS-CoV-2 infection and persistence throughout the human body and brain (preprint), December 2021, https://doi.org/10.21203/rs.3.rs-1139035/v1

Swank, Z. et al. Persistent circulating SARS-CoV-2 spike is associated with post-acute COVID-19 sequelae (preprint), June 2022, https://doi.org/10.1101/2022.06.14.22276401

Littlefield KM, Watson RO, Schneider JM, Neff CP, Yamada E, et al. (2022) SARS-CoV-2-specific T cells associate with inflammation and reduced lung function in pulmonary post-acute sequalae of SARS-CoV-2. PLOS Pathogens 18(5): e1010359. https://doi.org/10.1371/journal.ppat.1010359

Grobbelaar LM, Venter C, Vlok M, Ngoepe M, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB, Pretorius E. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19. Biosci Rep. 2021 Aug 27;41(8):BSR20210611. doi: 10.1042/BSR20210611. PMID: 34328172; PMCID: PMC8380922.

Pretorius, E., Vlok, M., Venter, C. et al. Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc Diabetol 20, 172 (2021). https://doi.org/10.1186/s12933-021-01359-7

Buonsenso D. et al., Evidence of lung perfusion defects and ongoing inflammation in an adolescent with post-acute sequelae of SARS-CoV-2 infection, Lancet Child Adolesc Health 2021;5: 677–80 Published Online, July 2021. https://doi.org/10.1016/S2352-4642(21)00196-6

Phetsouphanh, C., Darley, D.R., Wilson, D.B. et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol 23, 210–216 (2022). https://doi.org/10.1038/s41590-021-01113-x

Gaylis, Norman B., Angela Ritter, Scott A Kelly, Nader Z Pourhassan, Meenakshi Tiwary, Jonah B Sacha, Scott G Hansen, Christopher Recknor, Otto O Yang, Reduced Cell Surface Levels of C-C Chemokine Receptor 5 and Immunosuppression in Long Coronavirus Disease 2019 Syndrome, Clinical Infectious Diseases, 2022;, ciac226,

Su et al. Multiple early factors anticipate post-acute COVID-19 sequelae, 2022, Cell 185, 881–895 DOI:https://doi.org/10.1016/j.cell.2022.01.014

Oaklander, Anne Louise, Alexander J. Mills, Mary Kelley, Lisa S. Toran, Bryan Smith, Marinos C. Dalakas, Avindra Nath, Peripheral Neuropathy Evaluations of Patients With Prolonged Long COVID, Neurol Neuroimmunol Neuroinflamm May 2022, 9 (3) e1146; DOI: 10.1212/NXI.0000000000001146

Liu Q, Mak JWY, Su Q, et al, Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome, Gut 2022;71:544-552.

Chen Y, Gu S, Chen Y, et al, Six-month follow-up of gut microbiota richness in patients with COVID-19, Gut 2022;71:222-225.

Gold JE, Okyay RA, Licht WE, Hurley DJ. Investigation of Long COVID Prevalence and Its Relationship to Epstein-Barr Virus Reactivation. Pathogens. 2021 Jun 17;10(6):763. doi: 10.3390/pathogens10060763. PMID: 34204243; PMCID: PMC8233978.

Larsen, Nicholas W., Lauren E. Stiles, Ruba Shaik, Logan Schneider, Srikanth Muppidi, Cheuk To Tsui, Mitchell G. Miglis. Characterization of Autonomic Symptom Burden in Long COVID: A Global Survey of 2,314 Adults, April 2022, medRxiv 2022.04.25.22274300; doi: https://doi.org/10.1101/2022.04.25.22274300

Khazaal, Shaymaa & Harb, Julien & Rima, Mohamad & Annweiler, Cédric & Wu, Yingliang & Cao, Zhijian & Khattar, Ziad & Legros, Christian & Kovacic, Hervé & Fajloun, Ziad & Sabatier, jean-marc. (2022). The Pathophysiology of Long COVID throughout the Renin-Angiotensin System. Molecules. 27. 2903. 10.3390/molecules27092903.

Weinstock LB, Brook JB, Walters AS, Goris A, Afrin LB, Molderings GJ. Mast cell activation symptoms are prevalent in Long-COVID. Int J Infect Dis. 2021 Nov;112:217-226. doi: 10.1016/j.ijid.2021.09.043. Epub 2021 Sep 23. PMID: 34563706; PMCID: PMC8459548.

Wood E, Hall KH, Tate W. Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/chronic fatigue syndrome: A possible approach to SARS-CoV-2 ‘long-haulers’? Chronic Dis Transl Med. 2021 Mar;7(1):14-26. doi: 10.1016/j.cdtm.2020.11.002. Epub 2020 Nov 21. PMID: 33251031; PMCID: PMC7680046.

de Boer E, Petrache I, Goldstein NM, Olin JT, Keith RC, Modena B, Mohning MP, Yunt ZX, San-Millán I, Swigris JJ. Decreased Fatty Acid Oxidation and Altered Lactate Production during Exercise in Patients with Post-acute COVID-19 Syndrome. Am J Respir Crit Care Med. 2022 Jan 1;205(1):126-129. doi: 10.1164/rccm.202108-1903LE. PMID: 34665688; PMCID: PMC8865580.

Kumar, Premranjan , Ob Osahon, David B. Vides, Nicola Hanania, Charles G. Minard, Rajagopal V. Sekhar. Severe Glutathione Deficiency, Oxidative Stress and Oxidant Damage in Adults Hospitalized with COVID-19: Implications for GlyNAC (Glycine and N-Acetylcysteine) Supplementation. Antioxidants, 2021; 11 (1): 50 DOI: 10.3390/antiox11010050

Matheson AM, McIntosh MJ, Kooner HK, Lee J, Desaigoudar V, Bier E, Driehuys B, Svenningsen S, Santyr GE, Kirby M, Albert MS, Shepelytskyi Y, Grynko V, Ouriadov A, Abdelrazek M, Dhaliwal I, Nicholson JM, Parraga G. Persistent 129Xe MRI Pulmonary and CT Vascular Abnormalities in Symptomatic Individuals with Post-Acute COVID-19 Syndrome. Radiology. 2022 Jun 28:220492. doi: 10.1148/radiol.220492. Epub ahead of print. PMID: 35762891; PMCID: PMC9272782.

Singh I, Joseph P, Heerdt PM, Cullinan M, Lutchmansingh DD, Gulati M, Possick JD, Systrom DM, Waxman AB. Persistent Exertional Intolerance After COVID-19: Insights From Invasive Cardiopulmonary Exercise Testing. Chest. 2022 Jan;161(1):54-63. doi: 10.1016/j.chest.2021.08.010. Epub 2021 Aug 11. PMID: 34389297; PMCID: PMC8354807.

Joseph P, Arevalo C, Oliveira RKF, Faria-Urbina M, Felsenstein D, Oaklander AL, Systrom DM. Insights From Invasive Cardiopulmonary Exercise Testing of Patients With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Chest. 2021 Aug;160(2):642-651. doi: 10.1016/j.chest.2021.01.082. Epub 2021 Feb 10. PMID: 33577778; PMCID: PMC8727854.

Natelson BH, Lin JS, Blate M, Khan S, Chen Y, Unger ER. Physiological assessment of orthostatic intolerance in chronic fatigue syndrome. J Transl Med. 2022 Feb 16;20(1):95. doi: 10.1186/s12967-022-03289-8. PMID: 35172863; PMCID: PMC8849016.

Cook DB, VanRiper S, Dougherty RJ, Lindheimer JB, Falvo MJ, Chen Y, Lin JS, Unger ER; MCAM Study Group. Cardiopulmonary, metabolic, and perceptual responses during exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Multi-site Clinical Assessment of ME/CFS (MCAM) sub-study. PLoS One. 2022 Mar 15;17(3):e0265315. doi: 10.1371/journal.pone.0265315. PMID: 35290404; PMCID: PMC8923458

Jimeno-Almazán A, Pallarés JG, Buendía-Romero Á, Martínez-Cava A, Courel-Ibáñez J. Chronotropic Incompetence in Non-Hospitalized Patients with Post-COVID-19 Syndrome. J Clin Med. 2021 Nov 20;10(22):5434. doi: 10.3390/jcm10225434. PMID: 34830716; PMCID: PMC8617992.

Alzahrani AS, Mukhtar N, Aljomaiah A, Aljamei H, Bakhsh A, Alsudani N, Elsayed T, Alrashidi N, Fadel R, Alqahtani E, Raef H, Butt MI, Sulaiman O. The Impact of COVID-19 Viral Infection on the Hypothalamic-Pituitary-Adrenal Axis. Endocr Pract. 2021 Feb;27(2):83-89. doi: 10.1016/j.eprac.2020.10.014. Epub 2020 Dec 15. PMID: 33554871; PMCID: PMC7837186.

Ross IL, Jones J, Blockman M. We are tired of ‘adrenal fatigue’. S Afr Med J. 2018 Aug 28;108(9):724-725. doi: 10.7196/SAMJ.2018.v108i9.13292. PMID: 30182895

Cadegiani FA, Kater CE. Adrenal fatigue does not exist: a systematic review. BMC Endocr Disord. 2016 Aug 24;16(1):48. doi: 10.1186/s12902-016-0128-4. Erratum in: BMC Endocr Disord. 2016 Nov 16;16(1):63. PMID: 27557747; PMCID: PMC4997656.


Treatment Of Long Covid

Nurek, M., Clare Rayner, Anette Freyer, Sharon Taylor, Linn Järte, Nathalie MacDermott and Brendan C Delaney, Recommendations for the recognition, diagnosis, and management of long COVID: a Delphi study, British Journal of General Practice 2021; 71 (712): e815-e825. DOI: https://doi.org/10.3399/BJGP.2021.0265

Peluso, Michael J., Khamal Anglin, Matthew S. Durstenfeld et al. Effect of oral nirmatrelvir on Long COVID symptoms: a case series, 05 May 2022, PREPRINT (Version 2) available at Research Square https://doi.org/10.21203/rs.3.rs-1617822/v2

Wynberg E, Han AX, Boyd A, van Willigen HDG, Verveen A, Lebbink R, van der Straten K, Kootstra N, van Gils MJ, Russell C, Leenstra T, de Jong MD, de Bree GJ, Prins M; RECoVERED Study Group. The effect of SARS-CoV-2 vaccination on post-acute sequelae of COVID-19 (PASC): A prospective cohort study. Vaccine. 2022 Jul 30;40(32):4424-4431. doi: 10.1016/j.vaccine.2022.05.090. Epub 2022 Jun 7. PMID: 35725782; PMCID: PMC9170535.

Sivan M, Greenhalgh T, Milne R, Delaney B. Are vaccines a potential treatment for long covid? BMJ 2022; 377 :o988 doi:10.1136/bmj.o988

Pretorius, Etheresia, et al. Combined triple treatment of fibrin amyloid microclots and platelet pathology in individuals with Long COVID/ Post-Acute Sequelae of COVID-19 (PASC) can resolve their persistent symptoms (PREPRINT), May 2022, Research Square. https://doi.org/10.21203/rs.3.rs-1205453/v2

RECOVERY Collaborative Group, Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial, November 17, 2021, The Lancet. DOI:https://doi.org/10.1016/S0140-6736

Wu KS, Lin PC, Chen YS, Pan TC, Tang PL. The use of statins was associated with reduced COVID-19 mortality: a systematic review and meta-analysis. Ann Med. 2021 Dec;53(1):874-884. doi: 10.1080/07853890.2021.1933165. PMID: 34096808; PMCID: PMC8189130.

Bikdeli, Behnood, et al, Atorvastatin Versus Placebo In Critically-ill Patients With Covid-19: The Inspiration-S Double Blind Randomized Controlled Trial, https://www.abstractsonline.com/pp8/#!/9228/presentation/24055. https://www.everydayhealth.com/coronavirus/statins-do-not-improve-covid-19-outcomes-study-shows/

Pinto, Melissa D. et al., Case Study: Antihistamines for Postacute Sequelae of SARS-CoV-2 Infection, The Journal for Nurse Practitioners, Volume 18, Issue 3, March 2022, Pages 335-338

Glynne P, Tahmasebi N, Gant V, et al, Long COVID following mild SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines, Journal of Investigative Medicine 2022;70:61-67. October 2021

Utrero-Rico A, Ruiz-Ruigómez M, Laguna-Goya R, Arrieta-Ortubay E, Chivite-Lacaba M, González-Cuadrado C, Lalueza A, Almendro-Vazquez P, Serrano A, Aguado JM, Lumbreras C, Paz-Artal E. A Short Corticosteroid Course Reduces Symptoms and Immunological Alterations Underlying Long-COVID. Biomedicines. 2021 Oct 26;9(11):1540. doi: 10.3390/biomedicines9111540. PMID: 34829769; PMCID: PMC8614904.

RECOVERY Collaborative Group, Colchicine in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial, October 2021, The Lancet, DOI:https://doi.org/10.1016/S2213-2600(21)00435-5

Gaylis, Norman B., Angela Ritter, Scott A Kelly, Nader Z Pourhassan, Meenakshi Tiwary, Jonah B Sacha, Scott G Hansen, Christopher Recknor, Otto O Yang, Reduced Cell Surface Levels of C-C Chemokine Receptor 5 and Immunosuppression in Long Coronavirus Disease 2019 Syndrome, Clinical Infectious Diseases, 2022;, ciac226, https://doi.org/10.1093/cid/ciac226

Cabanas H, Muraki K, Staines D, Marshall-Gradisnik S. Naltrexone Restores Impaired Transient Receptor Potential Melastatin 3 Ion Channel Function in Natural Killer Cells From Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Front Immunol. 2019 Oct 31;10:2545. doi: 10.3389/fimmu.2019.02545. PMID: 31736966; PMCID: PMC6834647.

Toljan K, Vrooman B. Low-Dose Naltrexone (LDN)—Review of Therapeutic Utilization. Medical Sciences. 2018; 6(4):82. https://doi.org/10.3390/medsci6040082

Parkitny L, Younger J. Reduced Pro-Inflammatory Cytokines after Eight Weeks of Low-Dose Naltrexone for Fibromyalgia. Biomedicines. 2017 Apr 18;5(2):16. doi: 10.3390/biomedicines5020016. PMID: 28536359; PMCID: PMC5489802.

Oaklander, Anne Louise , Alexander J. Mills, Mary Kelley, Lisa S. Toran, Bryan Smith, Marinos C. Dalakas, Avindra Nath, Peripheral Neuropathy Evaluations of Patients With Prolonged Long COVID, Neurol Neuroimmunol Neuroinflamm May 2022, 9 (3) e1146; DOI: 10.1212/NXI.0000000000001146

Xie, Y., Xu, E., Bowe, B. et al. Long-term cardiovascular outcomes of COVID-19. Nat Med 28, 583–590 (2022). https://doi.org/10.1038/s41591-022-01689-3

Liu, Luke D., Deborah L. Duricka, Stellate ganglion block reduces symptoms of Long COVID: A case series, Journal of Neuroimmunology, Volume 362, 2022, https://doi.org/10.1016/j.jneuroim.2021.577784

Taub PR, Zadourian A, Lo HC, Ormiston CK, Golshan S, Hsu JC. Randomized Trial of Ivabradine in Patients With Hyperadrenergic Postural Orthostatic Tachycardia Syndrome. J Am Coll Cardiol. 2021 Feb 23;77(7):861-871. doi: 10.1016/j.jacc.2020.12.029. PMID: 33602468.

Castro-Marrero J, Segundo MJ, Lacasa M, Martinez-Martinez A, Sentañes RS, Alegre-Martin J. Effect of Dietary Coenzyme Q10 Plus NADH Supplementation on Fatigue Perception and Health-Related Quality of Life in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. 2021 Jul 30;13(8):2658. doi: 10.3390/nu13082658. PMID: 34444817; PMCID: PMC8399248.

Blackett JW, Li J, Jodorkovsky D, Freedberg DE. Prevalence and risk factors for gastrointestinal symptoms after recovery from COVID-19. Neurogastroenterol Motil. 2022 Mar;34(3):e14251. doi: 10.1111/nmo.14251. Epub 2021 Sep 1. PMID: 34468069; PMCID: PMC8646904.

Aldous, Thomas R, J, Forsyth R, Chater A, Williams M (2021) The Influence of a blend of Probiotic Lactobacillus and Prebiotic Inulin on the Duration and Severity of Symptoms among Individuals with Covid-19. Infect Dis Diag Treat 5: 182. DOI: 10.29011/2577-1515.100182

Thomas, Robert et al., A Randomised, Double-Blind, Placebo-Controlled Trial Evaluating Concentrated Phytochemical-Rich Nutritional Capsule in Addition to a Probiotic Capsule on Clinical Outcomes among Individuals with COVID-19—The UK Phyto-V Study, 22 March 2022, COVID 2022, 2(4), 433-449; https://doi.org/10.3390/covid2040031

Addison AB, Wong B, Ahmed T, Macchi A, Konstantinidis I, Huart C, Frasnelli J, Fjaeldstad AW, Ramakrishnan VR, Rombaux P, Whitcroft KL, Holbrook EH, Poletti SC, Hsieh JW, Landis BN, Boardman J, Welge-Lüssen A, Maru D, Hummel T, Philpott CM. Clinical Olfactory Working Group consensus statement on the treatment of postinfectious olfactory dysfunction. J Allergy Clin Immunol. 2021 May;147(5):1704-1719. doi: 10.1016/j.jaci.2020.12.641. Epub 2021 Jan 13. PMID: 33453291.

Yan CH, Mundy DC, Patel ZM. The use of platelet-rich plasma in treatment of olfactory dysfunction: A pilot study. Laryngoscope Investig Otolaryngol. 2020 Feb 21;5(2):187-193. doi: 10.1002/lio2.357. PMID: 32337347; PMCID: PMC7178450.

Recovery From Long Covid

Taquet M, et al. (2021) Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med 18(9): e1003773. https://doi.org/10.1371/journal.pmed.1003773

Hernandez-Romieu, Alfonso C. et al. Prevalence of Select New Symptoms and Conditions Among Persons Aged Younger Than 20 Years and 20 Years or Older at 31 to 150 Days After Testing Positive or Negative for SARS-CoV-2, JAMA Netw Open. 2022;5(2):e2147053. doi:10.1001/jamanetworkopen.2021.47053

Kedor, C., Freitag, H., Meyer-Arndt, L. et al. A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity. Nat Commun 13, 5104 (2022). https://doi.org/10.1038/s41467-022-32507-6

Evans RA, et al; PHOSP-COVID Collaborative Group. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study. Lancet Respir Med. 2021 Nov;9(11):1275-1287. doi: 10.1016/S2213-2600(21)00383-0. Epub 2021 Oct 7. Erratum in: Lancet Respir Med. 2022 Jan;10(1):e9. PMID: 34627560; PMCID: PMC8497028.

PHOSP-COVID Collaborative Group. Clinical characteristics with inflammation profiling of long COVID and association with 1-year recovery following hospitalisation in the UK: a prospective observational study. Lancet Respir Med. 2022 Aug;10(8):761-775. doi: 10.1016/S2213-2600(22)00127-8. Epub 2022 Apr 23. Erratum in: Lancet Respir Med. 2022 Jul 26;: PMID: 35472304; PMCID: PMC9034855.

Liu, Bette et al., Whole of population-based cohort study of recovery time from COVID-19 in New South Wales Australia, The Lancet, June 24, 2021, https://doi.org/10.1016/j.lanwpc.2021.100193

Menges D, Ballouz T, Anagnostopoulos A, Aschmann HE, Domenghino A, Fehr JS, et al. (2021) Burden of post-COVID-19 syndrome and implications for healthcare service planning: A population-based cohort study. PLoS ONE 16(7): e0254523. https://doi.org/10.1371/journal.pone.0254523

Davis, Hannah E., et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact, The Lancet, July 15, 2021 DOI:https://doi.org/10.1016/j.eclinm.2021.101019

Kim Y, et al.. Post-acute COVID-19 syndrome in patients after 12 months from COVID-19 infection in Korea. BMC Infect Dis. 2022 Jan 27;22(1):93. doi: 10.1186/s12879-022-07062-6. PMID: 35086489; PMCID: PMC8793328.

Yang Gao, Wei-quan Liang, Yi-ran Li, Jian-xing He, Wei-jie Guan, The Short- and Long-Term Clinical, Radiological and Functional Consequences of COVID-19, Archivos de Bronconeumología, 2022, https://doi.org/10.1016/j.arbres.2022.03.006.

Huang L, et al.. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir Med. 2022 May 11:S2213-2600(22)00126-6. doi: 10.1016/S2213-2600(22)00126-6. Epub ahead of print. PMID: 35568052; PMCID: PMC9094732.

Wulf Hanson S., et al. A global systematic analysis of the occurrence, severity, and recovery pattern of long COVID in 2020 and 2021. medRxiv [Preprint]. 2022 May 27:2022.05.26.22275532. doi: 10.1101/2022.05.26.22275532. PMID: 35664995; PMCID: PMC9164454.

Mukherjee, M. et al., Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long-COVID symptoms, European Respiratory Journal, 4 August 2022, DOI: 10.1183/13993003.00970-2022

Ferrucci R, et al.. One-year cognitive follow-up of COVID-19 hospitalized patients. Eur J Neurol. 2022 Jul;29(7):2006-2014. doi: 10.1111/ene.15324. Epub 2022 Mar 29. PMID: 35285122; PMCID: PMC9111730.

Shivani F, et al.. Long-Term Symptoms of COVID-19: One-Year Follow-Up Study. Cureus. 2022 Jun 14;14(6):e25937. doi: 10.7759/cureus.25937. PMID: 35844318; PMCID: PMC9282616.

Rass V, et al. Neurological outcomes 1 year after COVID-19 diagnosis: A prospective longitudinal cohort study. Eur J Neurol. 2022 Jun;29(6):1685-1696. doi: 10.1111/ene.15307. Epub 2022 Mar 23. PMID: 35239247; PMCID: PMC9111823.

Phetsouphanh C, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022 Feb;23(2):210-216. doi: 10.1038/s41590-021-01113-x. Epub 2022 Jan 13. PMID: 35027728.

Magnúsdóttir I,et al.; COVIDMENT Collaboration. Acute COVID-19 severity and mental health morbidity trajectories in patient populations of six nations: an observational study. Lancet Public Health. 2022 May;7(5):e406-e416. doi: 10.1016/S2468-2667(22)00042-1. Epub 2022 Mar 14. PMID: 35298894; PMCID: PMC8920517.

Tan B K J, et al. Prognosis and persistence of smell and taste dysfunction in patients with covid-19: meta-analysis with parametric cure modelling of recovery curves BMJ 2022; 378 :e069503 doi:10.1136/bmj-2021-069503

Ohla K, et al.. A follow-up on quantitative and qualitative olfactory dysfunction and other symptoms in patients recovering from COVID-19 smell loss. Rhinology. 2022 Apr 10. doi: 10.4193/Rhin21.415. Epub ahead of print. PMID: 35398877.

Ladlow P, et al.. The effect of medium-term recovery status after COVID-19 illness on cardiopulmonary exercise capacity in a physically active adult population. J Appl Physiol (1985). 2022 Jun 1;132(6):1525-1535. doi: 10.1152/japplphysiol.00138.2022. Epub 2022 May 19. PMID: 35608204; PMCID: PMC9190734.

Heart Rate Monitoring For Long Covid

de Boer E, Petrache I, Goldstein NM, Olin JT, Keith RC, Modena B, Mohning MP, Yunt ZX, San-Millán I, Swigris JJ. Decreased Fatty Acid Oxidation and Altered Lactate Production during Exercise in Patients with Post-acute COVID-19 Syndrome. Am J Respir Crit Care Med. 2022 Jan 1;205(1):126-129. doi: 10.1164/rccm.202108-1903LE. PMID: 34665688; PMCID: PMC8865580.

Saleh J, Peyssonnaux C, Singh KK, Edeas M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion. 2020 Sep;54:1-7. doi: 10.1016/j.mito.2020.06.008. Epub 2020 Jun 20. PMID: 32574708; PMCID: PMC7837003.

Keller, B.A., Pryor, J.L. & Giloteaux, L. Inability of myalgic encephalomyelitis/chronic fatigue syndrome patients to reproduce VO2peak indicates functional impairment . J Transl Med 12, 104 (2014). https://doi.org/10.1186/1479-5876-12-104

J. Mark Vanness, Christopher R. Snell & Staci R. Stevens, Diminished Cardiopulmonary Capacity During Post-Exertional Malaise, 2007, Journal of Chronic Fatigue Syndrome, 14:2, 77-85, DOI: 10.1300/J092v14n02_07

Todd E. Davenport, Staci R. Stevens, Mark J. VanNess, Christopher R. Snell, Tamara Little, Conceptual Model for Physical Therapist Management of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis, Physical Therapy, Volume 90, Issue 4, 1 April 2010, Pages 602–614, https://doi.org/10.2522/ptj.20090047

Heart Rate Variability, The Vagus Nerve and tVNS

Barizien N, Le Guen M, Russel S, Touche P, Huang F, Vallée A. Clinical characterization of dysautonomia in long COVID-19 patients. Sci Rep. 2021 Jul 7;11(1):14042. doi: 10.1038/s41598-021-93546-5. PMID: 34234251; PMCID: PMC8263555.

Marques KC, Silva CC, Trindade SDS, Santos MCS, Rocha RSB, Vasconcelos PFDC, Quaresma JAS, Falcão LFM. Reduction of Cardiac Autonomic Modulation and Increased Sympathetic Activity by Heart Rate Variability in Patients With Long COVID. Front Cardiovasc Med. 2022 Apr 29;9:862001. doi: 10.3389/fcvm.2022.862001. PMID: 35571200; PMCID: PMC9098798.

Acanfora D, Nolano M, Acanfora C, Colella C, Provitera V, Caporaso G, Rodolico GR, Bortone AS, Galasso G, Casucci G. Impaired Vagal Activity in Long-COVID-19 Patients. Viruses. 2022 May 13;14(5):1035. doi: 10.3390/v14051035. PMID: 35632776; PMCID: PMC9147759.

Hayano J, Yuda E. Pitfalls of assessment of autonomic function by heart rate variability. J Physiol Anthropol. 2019 Mar 13;38(1):3. doi: 10.1186/s40101-019-0193-2. PMID: 30867063; PMCID: PMC6416928.

Fournié C, Chouchou F, Dalleau G, Caderby T, Cabrera Q, Verkindt C. Heart rate variability biofeedback in chronic disease management: A systematic review. Complement Ther Med. 2021 Aug;60:102750. doi: 10.1016/j.ctim.2021.102750. Epub 2021 Jun 10. PMID: 34118390.

Reneau M. Heart Rate Variability Biofeedback to Treat Fibromyalgia: An Integrative Literature Review. Pain Manag Nurs. 2020 Jun;21(3):225-232. doi: 10.1016/j.pmn.2019.08.001. Epub 2019 Sep 26. PMID: 31501080.

Papadopoulou M, Bakola E, Papapostolou A, Stefanou MI, Gaga M, Zouvelou V, Michopoulos I, Tsivgoulis G. Autonomic dysfunction in long-COVID syndrome: a neurophysiological and neurosonology study. J Neurol. 2022 Sep;269(9):4611-4612. doi: 10.1007/s00415-022-11172-1. Epub 2022 May 10. PMID: 35536408; PMCID: PMC9086662.

Lampros M, Vlachos N, Zigouris A, Voulgaris S, Alexiou GA. Transcutaneous Vagus Nerve Stimulation (t-VNS) and epilepsy: A systematic review of the literature. Seizure. 2021 Oct;91:40-48. doi: 10.1016/j.seizure.2021.05.017. Epub 2021 May 24. PMID: 34090145.

Yuan H, Silberstein SD. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache. 2016 Feb;56(2):259-66. doi: 10.1111/head.12650. Epub 2015 Sep 18. PMID: 26381725.

Farmer AD, Albu-Soda A, Aziz Q. Vagus nerve stimulation in clinical practice. Br J Hosp Med (Lond). 2016 Nov 2;77(11):645-651. doi: 10.12968/hmed.2016.77.11.645. PMID: 27828752.

Badran BW, Huffman SM, Dancy M, Austelle CW, Bikson M, Kautz SA, George MS. A pilot randomized controlled trial of supervised, at-home, self-administered transcutaneous auricular vagus nerve stimulation (taVNS) to manage long COVID symptoms. Res Sq [Preprint]. 2022 Jun 21:rs.3.rs-1716096. doi: 10.21203/rs.3.rs-1716096/v1. PMID: 35765566; PMCID: PMC9238186.

Verbanck P, Clarinval AM, Burton F, Corazza F, Nagant C and Cheron G, Transcutaneous Auricular Vagus Nerve Stimulation (tVNS) can Reverse the Manifestations of the Long-COVID Syndrome: A Pilot Study, Advances in Neurology and Neuroscience Research, 2021.

Traianos E, Dibnah B, Lendrem D, et al. The Effects Of Non-Invasive Vagus Nerve Stimulation On Immunological Responses And Patient Reported Outcome Measures Of Fatigue In Patients With Chronic Fatigue Syndrome, Fibromyalgia, And Rheumatoid Arthritis. Annals of the Rheumatic Diseases 2021;80:1057-1058

Yap JYY, Keatch C, Lambert E, Woods W, Stoddart PR, Kameneva T. Critical Review of Transcutaneous Vagus Nerve Stimulation: Challenges for Translation to Clinical Practice. Front Neurosci. 2020 Apr 28;14:284. doi: 10.3389/fnins.2020.00284. PMID: 32410932; PMCID: PMC7199464.

POTS / Orthostatic Intolerance and Long Covid

Raj, S.R., Arnold, A.C., Barboi, A. et al. Long-COVID postural tachycardia syndrome: an American Autonomic Society statement. Clin Auton Res 31, 365–368 (2021). https://doi.org/10.1007/s10286-021-00798-2

Monaghan A, Jennings G, Xue F, Byrne L, Duggan E and Romero-Ortuno R (2022) Orthostatic Intolerance in Adults Reporting Long COVID Symptoms Was Not Associated With Postural Orthostatic Tachycardia Syndrome. Front. Physiol. 13:833650. doi: 10.3389/fphys.2022.833650

Liu LD, Duricka DL. Stellate ganglion block reduces symptoms of Long COVID: A case series. J Neuroimmunol. 2022 Jan 15;362:577784. doi: 10.1016/j.jneuroim.2021.577784. Epub 2021 Dec 8. PMID: 34922127; PMCID: PMC8653406.

Bengtsson A, Bengtsson M. Regional sympathetic blockade in primary fibromyalgia. Pain. 1988 May;33(2):161-167. doi: 10.1016/0304-3959(88)90086-3. PMID: 3380557.

Varanasi S, Sathyamoorthy M, Chamakura S, Shah SA. Management of Long-COVID Postural Orthostatic Tachycardia Syndrome With Enhanced External Counterpulsation. Cureus. 2021 Sep 30;13(9):e18398. doi: 10.7759/cureus.18398. PMID: 34729276; PMCID: PMC8555928.

Deep Breathing

Magnon V, Dutheil F, Vallet GT. Benefits from one session of deep and slow breathing on vagal tone and anxiety in young and older adults. Sci Rep. 2021 Sep 29;11(1):19267. doi: 10.1038/s41598-021-98736-9. PMID: 34588511; PMCID: PMC8481564. https://www.nature.com/articles/s41598-021-98736-9

Perciavalle V, Blandini M, Fecarotta P, Buscemi A, Di Corrado D, Bertolo L, Fichera F, Coco M. The role of deep breathing on stress. Neurol Sci. 2017 Mar;38(3):451-458. doi: 10.1007/s10072-016-2790-8. Epub 2016 Dec 19. PMID: 27995346. https://link.springer.com/article/10.1007/s10072-016-2790-8

Brown RP, Gerbarg PL. Yoga breathing, meditation, and longevity. Ann N Y Acad Sci. 2009 Aug;1172:54-62. doi: 10.1111/j.1749-6632.2009.04394.x. PMID: 19735239. https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.2009.04394.x

Westerdahl E, Lindmark B, Eriksson T, Friberg O, Hedenstierna G, Tenling A. Deep-breathing exercises reduce atelectasis and improve pulmonary function after coronary artery bypass surgery. Chest. 2005 Nov;128(5):3482-8. doi: 10.1378/chest.128.5.3482. PMID: 16304303. https://journal.chestnet.org/article/S0012-3692(15)52920-6/fulltext

Marc A. Russo, Danielle M. Santarelli, Dean O’Rourke, The physiological effects of slow breathing in the healthy human, Breathe 2017 13: 298-309; DOI: 10.1183/20734735.009817. https://breathe.ersjournals.com/content/13/4/298

Steffen PR, Austin T, DeBarros A, Brown T. The Impact of Resonance Frequency Breathing on Measures of Heart Rate Variability, Blood Pressure, and Mood. Front Public Health. 2017 Aug 25;5:222. doi: 10.3389/fpubh.2017.00222. PMID: 28890890; PMCID: PMC5575449. https://www.frontiersin.org/articles/10.3389/fpubh.2017.00222/full

Sevoz-Couche C, Laborde S. Heart rate variability and slow-paced breathing: when coherence meets resonance. Neurosci Biobehav Rev. 2022 Apr;135:104576. doi: 10.1016/j.neubiorev.2022.104576. Epub 2022 Feb 12. PMID: 35167847. https://www.sciencedirect.com/science/article/abs/pii/S0149763422000653

Pagaduan J, Wu SS, Kameneva T, Lambert E. Acute effects of resonance frequency breathing on cardiovascular regulation. Physiol Rep. 2019 Nov;7(22):e14295. doi: 10.14814/phy2.14295. PMID: 31782265; PMCID: PMC6882954. https://physoc.onlinelibrary.wiley.com/doi/full/10.14814/phy2.14295

Lehrer PM, Gevirtz R. Heart rate variability biofeedback: how and why does it work? Front Psychol. 2014 Jul 21;5:756. doi: 10.3389/fpsyg.2014.00756. PMID: 25101026; PMCID: PMC4104929. https://www.frontiersin.org/articles/10.3389/fpsyg.2014.00756/full

Hassett AL, Radvanski DC, Vaschillo EG, Vaschillo B, Sigal LH, Karavidas MK, Buyske S, Lehrer PM. A pilot study of the efficacy of heart rate variability (HRV) biofeedback in patients with fibromyalgia. Appl Psychophysiol Biofeedback. 2007 Mar;32(1):1-10. doi: 10.1007/s10484-006-9028-0. Epub 2007 Jan 12. PMID: 17219062. https://link.springer.com/article/10.1007/s10484-006-9028-0

Karavidas MK, Lehrer PM, Vaschillo E, Vaschillo B, Marin H, Buyske S, Malinovsky I, Radvanski D, Hassett A. Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression. Appl Psychophysiol Biofeedback. 2007 Mar;32(1):19-30. doi: 10.1007/s10484-006-9029-z. Epub 2007 Mar 1. PMID: 17333315. https://link.springer.com/article/10.1007/s10484-006-9029-z

Vierra J, Boonla O, Prasertsri P. Effects of sleep deprivation and 4-7-8 breathing control on heart rate variability, blood pressure, blood glucose, and endothelial function in healthy young adults. Physiol Rep. 2022 Jul;10(13):e15389. doi: 10.14814/phy2.15389. PMID: 35822447; PMCID: PMC9277512. https://physoc.onlinelibrary.wiley.com/doi/10.14814/phy2.15389

Saoji AA, Raghavendra BR, Rajesh SK, Manjunath NK. Immediate Effects of Yoga Breathing with Intermittent Breath Holding on Response Inhibition among Healthy Volunteers. Int J Yoga. 2018 May-Aug;11(2):99-104. doi: 10.4103/ijoy.IJOY_65_16. PMID: 29755217; PMCID: PMC5934957. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934957/

Shreya Ghiya, Alternate nostril breathing: a systematic review of clinical trials, July 2017, International Journal of Research in Medical Sciences 5(8):3273 DOI:10.18203/2320-6012.ijrms20173523. https://www.researchgate.net/publication/318714316_Alternate_nostril_breathing_a_systematic_review_of_clinical_trials

Gregory, Amanda, How Deep Breathing Can Worsen Trauma Responses, Psychology Today, 22 August 2022